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Abstract

We describe recent work on designing an environ-

ment, called .Java PathExplorer, for monitoring the

execution of Java programs. This environment fa-

cilitates the testing of execution traces against high

level specifications, including temporal logic formu-

lae. in addition, it contains algorithms for detecting

classical error patterns in concurrent programs, such

as deadlocks and data races. An initial prototype of

the tool has been applied to the executive module of

the planetary Rover Kg, developed at NASA Ames.

In this paper we describe the background and mo-

tivation for the development of this tool, including

comments on howif relates to formal methods tools

as well as to traditional testing, and we then present

the tool itself.

1 Introduction

Software is getting at: increased importance in

the development of space craft and rover technol-

ogy within the .space agencies. It is r_cognized

that futur,, space crafts will b,'('()m(_ highly :ut-

t()n()m()us, taking (h'(:isi()us with()_tr cornm(ufi('ation

ft'()m gr(>_m(l. Hem(,. tile requir(,(l s()ftw;tr(! is b)'-

('()nling fill)f(" COltlpl('X, m(r('asinK th,' ti:k ()f mission

fltil)lr-s. T('stinff) ()f '-;itch _v'4t('lll,'-; th('ri,f()r(! b)'('()lllt'S

crucial. Traditional testing techniques, however, are

very ad hoc and do not allow for formal specification

and verification or testing of the properties that a

system needs to satisfy.

The Automated Software EngineerinK group at

._:.-,5A.l!) Re. 'ai...C,tt_ i..',si_:,'_h.'i,- .h: 'e

years worked on developing advanced verification

and testing technology for space applications. Part

of this work has consisted of performing case studies

using formal methods, in particular model checking,

to analyze space craft software [6]. Based on the

experiences of these case studies, two tools have fur-

thermore been developed, both supporting full state

space exploration of Java programs using explicit

state model checking techniques [7, 14]. These tech-

niques allow for checking temporal logic properties

on programs that have a few million states, but fail

to apply on large programs. Abstraction is required

in order to increase the applicability of such tech-

niques, an often manual and labor-some process.

We present a new runtime verification system.

Java PathExplorer (.]PAX). fi)r monitoring of Java

program execution traces. The general concept con-

sists of extracting events from an executing prognun.

and then analyzing the events via a remote observer

process. The observer performs two kinds of ver-

ification: logtc based momtor'Zng ;uut error pattern

¢lnaty.sz._.

£oqt:: ba._'e'et mon_tor_:2q :¢m._ist:4 t>[ rhecking exe-

_'lltion trzu'es against u._er-provi,h'_i flU'thai require-

m,'ut sp,'_ific;tti(ms, writt(,n in high level io_;ics.

L,_u_t(s ;tr,' cItt'r('ti[lv hnpi('uwnr,'(i ill [_t_ r 4p(:cifica-

rLt>II [;tlt_tl;++_,' \Ltu<hP [lj. :t hte, h-l.'rf,)rmitw:e system

";ll[)[)lJ['PiII_ l+t)th m+,mt),,r,,hi l) ,,<l_t+tti()mt[ logic and



t<'_.'++tttLII_,Ic,!U< \[.lit, i,' LIL_r)'+_" _ ' ' ,i,'finl,' st,",',+' t,,,'y, + +n

.t {h",::l,I_ + m+it]n,'r ,lit PI .i:- t_,t+ ,'xatnld,' +t'ml},,l.ii +_,_-

t<+:+,. _+_i,rh_.7 ,%+:_+i PJiI'II + L}+j+q';l[l(ill,l] q'Hl+ll|[i+ , ('it+-

t,,nttv ,.,..,, ,ttpp,+t'; fttrltt+' rllll1' ;l.tlql +i,t.',r PHIl+' [ttt+';t[ +

rt'tlt[nJf_tt t(,_i(' A:-, p[,'<t,'tin,'_t h,t_tc+++ ['It,'lltt+JL,'ttt+'+t-

tilttt}tL <,t" [},fiSt rHl'_;(' [< }'_,'l('+-, _'t}',,'i't' tt'+S thim+It l.'_(J !HDP++;,

h+'m+' ,b,timm4 n,,w b+O<.+,, ft_r +,.',:,unp],, +]l}IIbtHJ _.[)L+-

+'tlJc _JtteS, sH{ntld I)+' ',:+'rv fi,+u-at}tt, for a.n +_.,tv;utc++'d

tl.-;('r. [+h_P ctirF++'ttt ',+,ry+]l)ii c)f .Matt<h, can <i<J up to

£] rni[litJn rewrirings p+-'r .+e<:oII_I on .+0<+l.'+vIhzpr,Jces-

s+}rs, and it.s compiled version is mtemled to _upport

15 mitSon rewritings per set,intl. Hence Maude +:an

be _tse{t ;_s the monitoring ,+ngine +,hat, performs the

conformance <:h+_cks <:,f events against specifications.

£Fror pattern ,+rnM!/.vis consists of analyzing execu-

tion events using various error detection algorithms

that can identify error-prone programming practices.

Examples are unhealthy locking disciplines that may

lead to data races and deadlocks. For example, a

deadlock potential can be discovered from a single

trace, even if that particular trace has no deadlocks,

if it can be observed that lock acquisitions do not

fl)ib+-w a partial order. By not requiring the errors to

a,:_ually occur in order to be detected, this is a way

to obtain a high de_ree of coverage although only

OltC c-,.P<....on st;'. c i_ cx,,tt2tt_:d. ,r:_ o_,lei.a] ' we' :_-

tO identify various concurrency error patterns.

The idea of using temporal logic in program test-

ing is not new. and has already been pursued in the

commercial Temporal Rover tool (TR} [3 I, and in

+. MaC tool [101. TR allows the user to specify

.: o+>rat formulae as comments in programs. The

.Ma( toot is closer to what we describe in this pa-

per. except thac its specification language is very

limited compared to the Maude language. In ad-

dition, we combine specification checking with error

pattern analysis. [n a tool like Visual Threads [4. 131,
these runtime analysis algorithms have been hard-

wired into the system and are therefore difficult to

change or extend .l_y.a user.

Eventually the system should allow to monitor

programs composed of subprograms written in dif-

ferent programming languages including also C+4-

and C. The system described in this paper wilI focus

,m Java. A case study of 9{L00(} tines of C++ code

for a rover controller has been carried out. leading to

the detection of a deadlock with a minimal amount

<_f eff+}rt. [t is our main goal to make the system

_+,rl+,ral and gem'ric a.s possible, allowing to handle

multiph, language systems, an<L allowing new verifi-

<ar.i<nt rules to b,, defined, ev+,n ,t,,finmg nt,,,v spec-

ii-i¢:atrit}tt [t}_i{'s II.";itI_ _[;}.llti{?. This way we hope to

/llitkl' _.hO >iS,'>,Pt'Ill & })/k_iiS for +._x[)+_ri/ili'ii_._i /';t[h{'r _,han

,t tix,,+I system

lit, + {},_l,,.i t_, +,t ;,:tnht/, ,i .t., t, +I[, ,','. - '<,',tt,+It 2 ,k, +-

>{'t tI)+"_ Flit' +_'._q AH .tFr'Pltr_'+ flit,' ,d'rh,' ,'+ .%'tit _i'++tll_lt

£_ +It'_,+ Yl+_,'b +Ill' ;I+I'I+'F+'.'A+" !,,UI< t'_,ttI+,+i[_,[tl", [,+r '.t+r[r.

itl_ D'{lllit+'Htq'tH _[},'{'l{+r :itI+_IL"+,. Wlttl+' %,'t'tl<+tt t +[+'-

";+'l't[)+ ", -_ nlt+' ' }f t It .... tr+ +t" , [_ .t, '<t t_ >It . I[_, +I'Ll it rtl-_ +'i +r +1+ '-

+)llggiIl_ ct}n{elrr_,nt [}r,,1:;utns f"ill;l[++ _(+(rl'ill[L '} ¢+Oll-

t.,lill£ I'c)Ill'hlyd(ills ,tlt_I ,: ,[,>cripri{m (_t" ['11[111"+' WC}l'k+

2 System Architecture

The ar{'hite{:tlu+, ' ,ff.lP \X is shown in Figure L. The

inp+it t.o .JP_X ,:_msist+ ,Jr two e_l[ieies +_)r rather

pointers to these]: the Java pro_r;ml ill bvte-,:ode

format to be monit,)rod (created usin_ a, standard

Java compiler) and the specification script defining

what kind of analysis is requested. The output is a

(possibly empty) set of warnings printed on a speciM

screen.

Figure 1: JPAX Architecture

The specification script consists of an instrumen-

tation script and a verification script. The instru-

mentation script defines how the program should be

instrumented while the verification script defines ex-

actly what kind of analysis should be performed, and

if logic based monitoring is requested: what proper+

ties should be verified. Currently. the scripts are

written in Java, which calls Maud+, if needed. Thus.

high Iev+,l Java language constructs can be nsed to

define r,he boolean predicates to b,' observed. Then

the values ,)f those predicates are shipped to Mau<te

for deeper Logiobased analysis,

.IPAX (.';in be regarde+t ;ts consisting of three

main m¢J{tui<'s an en,vD"umcrtteilm¢l module, all

ob,'ierver Ittt)dU[e. a:i{I Jill LIL¢,'_TT+tJIIItF+*t.',+D'Jfl tllt)+iu[e

th.at ties t.hetn together t+hl+'_}ng;ll tht' tj+++++.rv++d tP'.,'ellt

Stt'+'ittIl. +['Ill' itlStrulllt'IiI'&ti{}tt HlOc[liI,' +}++rft}iIll5 il

.scz'il}t-,h'ivP1_ aut+m_at+'+I jll,SPrlllllellT,l[l{Jll 'Jr tilt' pro-

gt;un r_} I)+' _}b._+'rv+'+l. ill{' ill_rrlllliPltt.+'<[ [+_ri}_ralll.



_.tt,'ttIPLII.'._qll,r:llt r',.l_"._!tt ,%'+'ttl_ t,, Phi, tllf,q;ut{qJrl

fiB',lille'. '.VIII, h P_tiCIim't rt:lll_tlllt."+ th,'rtl t_) tit,' ,J))si'r-

+;ltt,+nt :ut.i,th' [h,' ,Ji+>t,t"(_,r Hi+iv i'tttt t)[t ,t ,[tif(T+'[t[

,dtll_tlft'[ +It ',,V+iU !t +'A+4' _+ilt' i",;l'lt(:, ,LI'_' tl';tllNlltttl+.++d

,_,', t .,,<!u't I <,r ,h'tin,',i ,,{_rU,u_ .dh,w [,J,M-in,+

r}+¢,-,.+t+'r+tJ <+,t+jp

[Ttt,' iti>rrIttil,,nt,tthJtt i>. [)+,it+c+rttt¢,_i llStIl_ Fit+' .IP, rf+'k

.l&',;& })'¢tt,-d<JlIe .fftgine+Prifl)_ ti_,<)l {21 I'r,)nt C+)inpaq.

['[its r.<_)[ allows t,> rea<[ .J;tv;t (:lass Piles (byte-code
filest, traverse _hem as abstract svnt,tx trees while

,_xil.lnilli[lg r,heir contents, aml ms+,rt new code in a

highly flexible tnanner. The inserted code can access
the contents ,ff _he metho_t call-time stack at run-

tt[lle, hence giving access to information needed in

_he analysis. The extracted information is transmit-
ted in _he events. The observer receives the events

and dispatches _.hese to a set of observer rules, each

rule performing a particular analysis that has been

requested. Observer rules can be written in Maude

or in a traditional programming language such as

Java. or even C if speed is crucial. Generally, the

rule based design allows a user to easily define new

runtime verification procedures.

The only language specific part of the system is the

i[,str,mwntation module. If one wants to set tip the

/!:_',:_to::mch. f,,. a d:_[evez_; huag,,,Jge, +u,.i,ao .. +-+r-,

one will only have to replace this module. We tried

_+his together with Rich Washington. a member of

the Robotics group at NASA Ames, on a 90200 line

Ca-a- application, just activating the deadlock detec-
tion rule. and located a deadlock. This work will be

prea,+uted in a different publication.

3 Logic based Monitoring

As previously mentioned. JPAX currently allows two

conceptually independent methodologies for runtime
verification. One is specification based monitoring,

which is the sublet.of this section, and the other

is error pattern analysis presented in the next sec-
tion. The main difference between the two is that

ttw first counts upon an underlying logic in which

tJw user can expr,ss any application dependent logi-

c,d requirmnents, while the second implements more

,)r less standard programming [anguage dependent

algorithnls that detect typical concurrency error po-

tentials, in this way. we believe that .IPAX offers a
[;trg('. if not a flt[l, spe(:l.runl of possibilities for run-
time verifi(';_ti()n.

in ,>r,t+,r t,++write ;t runtilne refltlirenlent specil-h'a-

ri,m. the' ,>¢'r _holdd lirst .h<_os+, an appropri/tte logic

t,_ +,Xl)r,,ss rh,, tnren,h',t pr<_p++rties..fP\+\ curr+,ntIy

[)r+:.'i<lcs [itt,'+tr tt't't|{),Jt';t[ h)gi<'s+ both ftttttr++ r.ilrle anti

pa._r, tnut,', n:_ {),ultit, h,e,e<_. t,lt ,,m' ,,_,LI,{ t,'lartvolv

+,;tstlv tic'tin,, tl¢'w [,>¼l+, ,,r ,.tlll,h th¢' ,'xlsttul ,mrs.

N,,tu,' that m,titilfl,, t,,'at,:, ,:tn b,' ,l>,'+l ill {)ar:tlJ,'l, +o

,'itCh pr<_l>,'rtv can b,. +.:.:pr,,ss,',[ ill its Ill, ).";l"-;llii';tbJl+

tanguau;e. Sin,',' the Nlat, t,l+' imph,uwntatiqms ,ff th++

+:urr,'[lt {,><its ;tr+! qlllt+' ,'lHn[)a¢t. We' ti)(lk the }ib+,rtv

to inchul<,thc,nttn th,,p+tper.

3.1 The Maude Language

Maude IlI is a mh_iuhtrized specification and verifi-

cation system that efficiently hnplements rewriting

logic, it is relatively widely accepted that rewrit-

ing logic acts like a universal logic, in the sense that

other logics, or more precisely _heir syntax and op-
erational semantics, can be implemented in rewrit-

ing logic. Furthermore, Maude provides support for

meta-prograsnming, so complex logic dependent rea-

soning strategies can be implemented as well; how-
ever, we didn't need the mete-level yet, but we ex-

pect to need it soon, as JP.hX will be extended.

There is not enough space to present the Maude no-
tation in more detail here, but we'll introduce some

of it "on the fly" as we give examples, such as the

following one.

3.1.1 Propositional Calculus

The following module for propositional calculus.

which is heavily used in JP.xX, implements an ef-

ficient procedure due to Hsiang [9] to decide validity

of propositions:

fmod PROP-CALC is pr FOP.MULA .

op ./\_ : Formula Formula -> Formula [assoc cornel .

op _++_ : Formula Formula -> Formula [aeso¢ comm] .

_rs I Y g : Formula . _ax la* : _to_tate, .

eq true /\ I = I . eq false /\ I * false

eq false *+ I = I . eq I +÷ l _ false .

eq I /\ I - .t .

eq I /\ (l ++ Z) - (l /\ Y) ++ (l /\ Z) •

• e+ Deri_ed opera,ore _e*
op _\/_ : Formula Forlula -> Formula [asso¢] .

op != : Formula -> Formula .

op _->_ : Formula Formula -> Formula .

op _<-> : Formula Formula -> Formula .

sq It \/ Y = (l I\ Y) +" X +',-Y

eq ! X a _rue ¢'* X .

eq It -> Y - zrue ++ I ** (l /\ _') .

eq I <-> Y * true ++ I *+ Y
,,-. Data structure t Semantics

eq (X /\ Y)(As*} • X(_ls*} /\ *(As.}

eq (l +* Y)(ls.} • l{ls.} +.+ Y{is.} .

endfm

The undersc,_res stay for arg,tments. The mod-

,tie FOR,WtJLAwhh'h is "protected" (or imported) de-
i'in+,s the' infra.struct,Jr+! for all P.h,' ,Js,,r-,letined [ogi,'s.

That in+:l,uh's some d,,signated ha.sic sorts (or types)
sncl'l ;kS Formula for -,vnta.ctJ+: formulae. FormulaDS for

f<)rtnlllat data stru<:tur+'s n¢,,,lv,[ why'It i+Ii1)r¢. + informa-

tion dwrt th,' fi_rrrml;t its,'lf _h<,d+l be k<'pt for the



!DF,.I ll.tH_ltlIdl .I.- }[J _tD' tLU_' ,)[ I),k_? r]|ll(' hIu';L[

t;llID"-, ,'_),Irr_t[IU _++l',,Ill)"+l_i_*li> ,tlDl Atom_t,lt_ +, I'id" ;t,_-

-;t_lLllt(qtt-,t,-, ,111(J%+ ' t()!2,('i+it(*t" Witll litt;d ;l>,.",t_tllllaqIPS,

l.,'. _}l()>,+' rhitt ,If+' fl)Hl)W,'{i +)'_' thq' ,'II(i ,)I" rl';ti'l +((Jllr

+;(,tll;ttlri(:.., [_J[" rh(' "zx, t ()t" r,h+' om(,(llli()rl tr;t('+, is rkxat ()t"

;t t<lrll-HtlD)l£> +;,[r.,++,>+,.i tII;Lt +tt.,_,n't <'h;Ul_(' i+he +til.t(+:l.

+[+h+' u+',('r is h(',' r(+ (,xrt,n<i rhes+, typ+*,< aml/+>r pro-

'chle +tpproprLti+e inlp)en).enratiott:.5 for them as in the

m(nht[+, ;d+o;'+,+ P+,rhaps the most important oper-

ation provi<l+,d by the module FORMULA is :+.11()per-

athm _{+}:FormulaDS AtomState -> FormulaDS which

ilpdates the formula data structure when an (ab-

stract} state change occurs (luting the execution of

the program, Notice that this update operation acts

like a morphism for propositional calculus, so it ba-

sically evaluates the propositions in the new state.

3.2 Linear Temporal Logics

Linear temporal logics (LTL) are widely accepted

as reasonably good formalisms to express require-

ments of reactive systems. However, there is a tricky

aspect of specification based monitoring which dis-

rin_prishos ir from other formal mothocts technitmes,

aucn a.5 mudel checkmg attd [+ilt2OIEtil pl. OVtlig: t.he

end of trace. Sooner or later, the monitored pro-

gram will be stopped and so its execution trace. At

that moment, the observer needs to take a decision

regarding the validity of the checked properties. Let

us consider for example the formula 2;(p --+ oq). If

-ach p was followed by at [east one q during the man-

re)red execution, then, at some extent one could say

that the formula was satisfied: but one should be

aware that this is not a definite answer because the

formula could have been very well violated in the fu-

ture if the program hadn't been stopped. If p was

true and it was not followed by a q, then one could

say that the fornmla was violated, but it may" have

been very well satis6ed if the program had been let to

continue its execution. However, there are LTL prop-

erties that give the user absolute confidence during

the monitoring. For example, a violation of a safety

prop+,rty reflects a clear misbehavior of the moni-

t,>red program.

The hPsson that we learned front oxperiments with

LTL maturating is twofold. On the one hand, we

learned that. unlike in mode[ checking or theorem

pr,>ving. LTL formulae am[ especially their violation

_>r satisf, t('rion must [)e regarded with provisions dur-

ing rn()/,it()ring. ()n the otlwr hart(l, we deveh)pe(l a

b+,lief/hat LTL IIhLV tl()t [)*'the m()sl', a.l)propri_tte for-

//I;tliSllt for h).u)l(: base([ tttt)tlit()t'itt_; t)ther rm)r() spe-

('trio (())4ics. ";ILl'h 3.,"; rpaI tilm, g FL. iltt('rv;tl (olgi<'S. or

,',.on _ttt, li>,,_v+'r(._I ,,+.,,. ,t)id,[ I),' +)t",_,,t,,._t('r tnt,'r(,st

th+ttl [)lit(' l.l[. It] th,, tll'Xt +,II[)S('('ti,,II> V.'(' l)rt('tlv

,i('s(I+l[)( ` l))lt + ,liltS)l(' iZlllJk_'ttl('[lriltl()II5 _>[" t'ltrttt+' tlllle

;m,I Im:,tttu.' I+[+L+n \[mal,'.

3.2.1 Future Tim++' LTL

Fur,m, tim,, LFL ,an b,' itr+phmtente(t more ossify

than we initially thought ,m r.op of propositional caJ-

(-utus. [t basically awe(Is ,>nlv __ rules, a pair for each

operator:

fmod FT+LPL ts ex PROP-CALC

*'" Synta£ "'"

ops ([]_) (<>_) (o) :For=ula -> Formula

op .U~ : Formula Formula +> Formula

,ee Data _tructlLre t _em_u_tlc_

vats X _ : Formula vat As : AtomState

eq ([] I)(ls } = ([] X) /\ X{As} .

,q ([] I)(Aa .} • I{X, -}

.q (<> I){Am } • (o I) \/ l{Xa} .

*q (<> I){A= *} = l(Xs *} .

,q (o I){Aa } • I .

aq (o I){A= .} • I{A, *} .

,q (I U ¥){lm } - ¥{Am} \/ (l{A,} /\ (X U ¥)) •

aq (l U ¥){Am .} • Y{A. "} .

endfm

Each pair of rules says how a formula transforms

during rho exoc))tion of the nro_rnm. More procisely,

timy impiet,,cnt ,,,e foIlo',ving stmp,c equivai_.nc_-s:

s>_ iff ;{s*} = true.

where st is a trace formed by a state s followed by

a nonempty trace t, while s can also be viewed as

the trace consisting of s followed by the end of trace.

A proof of correctness of this algorithm is given in

i8}. Despite its overall exponential comple:rdty, this

algorithm tends to be quite acceptable in practical

situations. We couldn+t notice any sensible difference

in global concrete experiments with JPAX between

this simple 8 rule algorithm and an automata based

one that implements in 1,400 of .lava code a Buchi

automata algorithm adapted to finite trace LTL (see

Subsection 3.3).

3.2.2 Past Time LTL

Past titne LTL is useful for especially safety prop-

erties. These properties are very suitable for Logic

based monitoring because once they fail we know for

sure that the progr;un is not correct. The [it_ple-

rn(,ntati()n ,)f p_u-lt tithe L['L is a ()it more tedious.

It is sis<) b,tilt ()n top uf prop(,sitionaI cah:ulus, by

addit,g rate ItsttatI two [)a:,t time Ol)('tat(ffs. ". for pr'e-

,,)Z+)ll.'; ;tll(l .S_ f(,t" +szrt,','. ;tIt(l then ;tpl)ropriate data

Stl'lt('tllrl's ;LILI_ '_('[ll/tll[i(+_:
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_p [:,)f_q L,_ " • Formu1,i

_p i_ Formula F_rmuta -• F,_r_uLi

• *- D.tt4 $tr_iLturq k :_emaAtLc}

.Jp ptLtL F*_rmuLl -) g_rmut.xDS

)p it.)m Atom BooL -> gormulaDS

)ps pr,v Formu£aDS Boot -> FormulaDS

>ps snd _or since FormutaDS FormulaDS Boot -> FormulaDS

tars I f Formula vats O Dx Oy O' Dx' D 7' FormulaDS

•_r 3 3ool _ar A Atom _ac AS ltomState

eq ptLtl_true){As} = _rue eq ptLtlCfalse){As_ _ false

_q ptLtt(A}{Aa} • .Atom(A, (h{hs} =- true))

eq ptLtL(" X){hs_ = false

teq ptL_L(I S Y)(hs_ - since(Dx, Dy, [Dy])

_f Dx :- ptLtlfX){hs_ /\ Dy = ptLtLfY){hs}

ceq ptLtl(X /\ Y){Aa} = and(Dx, Oy, CDz] and [Dy])

tf Dx = ptLtlCX){As} /\ Oy = ptLt_(Y){ha}

ceq ptLtiCX +÷ Y){hs} = xor(Dx. Oy. [Dx] zor [Oy])

tf Ox = ptLtl(X)(hs_ /\ Dy = ptLtl(Y){As} .

eq [atom(A.B)] = B

eq [prev(D.B)] = B

eq [since(Dx.Dy.B)] - B

eq [and(Dx,Dy.B)] = B . eq [zor(Dx,Dy,B)] - B .

eq atom(h.B){A*} = atom(A, (A{AI} -- tx*_e}) .

eq prev(D,B){Aa} = prev(D{As},[D]) .

ceq since(Dx,Dy,B){As} = since(Dx',Dy',[Dy'] or 8 imd CDx])

if DI' :- Dx{AI} /\ Oy' := Dy{Aa} .

ceq and(Dx,Dy,B){hs} = and(Dx',Dy',[Dx'] _d [Dy'])

if Dx' := Dx{As} /\ Dy' := Dy{As} .

ceq xor(Dz,Dy,B){As} = xor(Dx',Dy',[Dx'] xor [Dy'])

if Ox' :- Dx{hs} /\ Dy' :- Dy{hs} .

eq atom(h,B){ha *} = true .

_q prev(D.B){hs *} = tz-_Ae .

eq since(Dx,Dy,B){he *} • true .

eq and(Dx.Dz.B){As "} • true .

eq xor(Dx,Dy,B)(hs *} • true .

The operation ptLTL initializes/creates the data

structure associated to a past time LTL formula, the

operation [_] reads the current truth value of a for-

mule, while the operator _{_} updates a formula data

structure.

3.3 Observer Generation

As one naturally expects, monitoring via event ex-

traction can significantly" slow down the normal ex-

ecution of the monitored program. In particular,

the two event buffers of JPAX (one from the instru-

mented program to the observer and the other from

the observer to Mtrude) sometimes slow down the

original program by an order of magnitude. We are

still investigating the real reasons for this, but at this

stage we believe that a significant factor comes from

the buffer comnmnication between the observer im-

plemented in .Java and the logic engine implemented

in *[mute. Therefl)re, it may be desirable to device

.lava inxplementatiorxs that directly check formulae

against execution traces, at [east for those logics that

turn out to be heavily used.

Since ./PAX onh" uses lirmar temporal logics, we

c(m<'entratetl only ,m f, ltltre time ,mcl past time LTL

xo far In [12[ we showed how one couhl generate a

,[!,'n,tmiv-iJrograznming b;kse(l a[g()rithm from any fl,-

t,lZ't,rime [.T[. formt]ht, sht)wing that it runs in time

i)i,//t/: ;',,'il_'t_' :_ i_ rl1,' q/,' ,,t th,' rz,,tr' .t[I,[ fit IS

rhc <ix,',)t'the' t,)ra,,tl,t [ rl(,,ttlln.tr,'[x, rh,tr ,dgo.

I lrhlIl '.'l>It5 tilt' _':,:('(Iitl(_rI rr;1((' l);l(k'._;tI¢[>. IID';Lllillg

!!hll ,t ['_t'tIllll;t ¢';tZl [_' t_",l_',i _,[llv ;tt't_'r" flu' t)['_t_r;I.III.

ts ¢,@l),',l :tzz,_ .dl it> _3:_'_'lltt_it rt':to' _r(w,,(l. Fortu-

uar,qv, the same id,';t ;q)pli,'(i ,m pa.>t Zillle LFL yields

}_v ,lu,tlizatitm ;t f,_rw:tr, ls ;tlgt:tirhm which runs in

i:[ll-' "-i_t[lle [,Hlle: l[i,', hal'r[ h) })e[ieve rh_tr I)(l_-? can test

past t.ime LTL f,)rrnuhu! ,m finite traces faster.

Taking into ;u:qpltnt the (:(mtinuously decreasing

price of storage, r.he backw,trds algorithm for flzture

tmae LTL 112] is acceptable even bevon(l the proto-

_yping stage ,)f the tool. ()ur colleague Dimitra Gi-

annakopoulou took the challenge and implemented

in about 1.400 tines of .Java code a modified version

of a Buchi automata algorithm that takes into ac-

count the particularities of finite trace LTL: the de-

tails of her implementation will appear elsewhere. It

seems that finite trace LTL is a significantly simpler

and more computable logic than the standard infinite

trace LTL. In particular, we were able to show the

existence and then generate a minimal standard au-

tomaton from any formula, automaton that accepts

exactly those finite traces that satisfy" the formula:

this construction will also appear elsPwhero.

'.Ju. laai{l (v, ll(Cl'lt ,_tt _hlo sTa6,' _ L " ' : ill',,.:tab_ti-_'

more suitable logics for monitoring than future time

LTL rather than generating efficient implementa-

tions for formula checkers. The flexibility and ease

in developing and/or modifying logics in rewriting

logic, as well as its expressivity, efficiency and sup-

port for meta-programming, make Maude a perfect

choice as a logic engine to validate user defined re-

quirements at this early stage of .IP._X.

4 Error Pattern Analysis

Error pattern analysis is conceptually based on an-

alyzing an execution trace using various algorithms

that are able to detect error potentials even though

errors do not expli(:itely occur in the examined exe-

cution trace. The goal is to extract as much infor-

mation as possible from a single execution trace to

be able to suggest problems in other execution traces

that have not been exph)r(,d. Two t,xantples of such

a[g()rithms focusing t)n con(:urrett(:y t,zr_)rs have been

iznpleznentet[ in .IPAX: ,t data r,ue anaHsis algo-

rithm ;met ;ttLea(lh)ck ;tnalvsis ;d_,_rithm Previously.

ht)th al_;,;rithms haw, bt,,,nitnphmwlat,'tl in the Vi-

s,ml Thrt'a, ts r,,,,I [L i r.o _,)lk t',,r (' :m,i ('-- Also.

itt rt'cent w,)rk ,xt, imph,mt'nr:'(l thr ,l:ttn race algo-

rithm and it varl,mt ,>t" the' th':ttll_),k ai_,>rithm in the

.litv;t P;tthFiluh'r tt)t,l ']i t,,w,,rk ft,, .14',:t _P; [llOtl-



_)tt_ ,,)rttI_i_iirl,,rl ii,,r,' L'; _,, rnltk_' (k_'s(' ,dI.V)r:rhr[i:_

','_ill+l_ +'let" J+L',;i IMII_ l)',;"_'-+t)(II' tlt:-,i't')lilll'llt&i+i()li: r_)

[ttr,,_t;tl-_, r]:(,+lt v,tt]l [(JL+'i[' l)+ts,,(t ttlt)tlltt)rtn_i ;tIl(_ r.o

ttt,li,:.(' +r i}iF++,-qlil(, PlJr :tell a, ivan(',,<t _im'r r.,) pr{))gr;).m

:)._,',v +'rt+,r lJ;trri+rti ;tIta[v:'+;iS rlil(+'s tz! a _l,xib[(-:' tllalti'ler.

Err,)r [)arr+,r'n ,malvsis +tl_orithms typi('allv <h) not

_tat;tltr('(' tit,it ,'rr()rs are f()illI(l since they. after ;tit.

•,v()rk ,m _t sinff, b" arbitrary trace. They also may

rich[ false p,>sitives in the sense that analysis results

indicate warnings rather than hard error messages.

What is attractive about such algorithms is, however,

r.hat r.hev s('ale vorv well. and that the?' often seem

to catch tile problems they are designed to catch.

l'hat is. the randomness m the choice of run does

not seem to imply a similar randomness in the anal-

ysis results. [n the following we will shortly describe

_he data race and deadlock detection algorithms.

tL.
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4.1 Data Race Analysis

This section describes the Eraser algorithm as pre-

sented in i13J, and how it has been implemented in

JPAX to work on Java programs. A data race oc-

curs wh_m two concurrent threads access a shared

t'_. i.D. P)"_ wh' 11 {it i, A:;t OlU' i).( uec,q i_- t _ '+_,. _.tI_. !

the threads use no explicit mechanism to prevent the

accesses from being simultaneous. The Eraser algo-

rithm detects data races in a program by studying

a single run of the program, and from this trying to

conclude whether any other runs with data races are

possible. We will illustrate the data race analysis

with the following example.

[. class galue{

2. private int • = I;
3.

4 pubtic synchronized voxd add(Value v){• = • <- ?.get();}
5.

6+ public in1; _etC){return •;_"

3

9. class Task extends Thread{

10. Value 71; Value _2;"

public Task(Value _l,Value +..'3).(

_hZs 71 = vl; _his v2 - '+'2;

this start() ;

}

public vozd run{){vt add(v2);}

20, class Main{

21 publtc static void _atn(Strlng[] args){

22 Value _I - ne_ g_lue(); Value _2 - new Value();

23 new Tas_(_l,_2); new Tael(vR,vL);

24 }

2S

['h(_ Value ckLss (h_fines an integer variable x. a

synchr(>nized rn(,th,)(t add for updating the variable

<;t([([inN rh.e (()ltr(,ztts ,)f ;tnt)th(,r Value variabh,), and

,'I' 'tZi,',III hlrJIII/I"[ :+l,t h, +(l ge_ [111| __*,i,llzz!_ In(* va[l++

[ 1 ' I + ' [ q + _ + ' r_ 1 _ k + " I ' _i_S ( ._ : t P + t _'+ ' ; ' [ 1 + " _ ' t :" > , itt:'t;trt"'+'S r+[

'.,.l_uh can ]),. ,t,ut,.,[ '.viPh rh,, at::arr. ;m'th,><l r() ('x-

,'_ II_',' tlt_'tt r_lp, tlterh+>,[ [w<_ -;t1,_1 rA..;k5 ,tr(' +r,trted

iZl r+l(, Ill;lilt I>[+)_I';tlll +)It I'w() tll3GIII('+'."; t)f [h(' Value

<'la._s When :unt)in_ JP.\X with th,, Eras('r +)l)ti,>n

_wit(he(l ,m. ;t (lara [';t(:+, [)<)tpntial ts fillIIl(l, report-

in:4 that. Eli(! ';;lriabl, :( m ,'fiLes Value is a(:r('sse(l

)mprot(,<'tpd by the two Task rhremls in lines 4 and 6

r_,spectiwqy. The _.roblem detected is that. one Task

threa(t i:all call chb. add method on an obje('t, say c'_,

with ;1 parameter Value object c_. an<l this method

in turn (:alls the unsyn(:hronize<t ge_ metho, t on v?.

The other thread can simultaneously make the dual

operation, hence, call the add method on c._,. Hence

the x in c'-> may be accessed simultaneously by the

two threads. [n fact two data race warnings are emit-

ted since the same situation is possible with vt and

w interchanged.

One could argue that all methods should be syn-

chronized such that data races can be detected us-

ing simple type checking. However it is often seen

that Java programmers avoid defining all methods as

synchronized in order to optimize the program (syn-

chronization slows down an application somewhat).

Fltr._+,_:m,.,,. :v:.,:h.:mi,.a+,:_ ,_ ;_!ro: _,,_: .':, b_

achieved by executing synchronized statements such

as:

syachroa_zed(_'I ) (
vl. add (v2)

I

In thiscase itbecomes impossible to detect data race

potentials syntactically. This is the situation in lan-

guages such as C and Ca-+ using Pthreads [11].

The basic algorithm works as follows. Two data

structures are maintained in the observer: a thread

map keeps track of which locks are owned by any

thread at any point in time. The second data struc-

ture, a variable map, associates with each (shared)

variable in the program at an)' point in _ime the

biggest set of tocks that has been commonly owned

bv all accessing threads in the past. If this set be-

comes empty a data race potential exists. That is.

when a fieht is accessed fl_r the first time. the locks

owned bv the accessing thread at that time are stored

in this set. Subsequent accesses by other threads

causes t,he set to be reduced to its intersection with

the locks owned by those threa(ls. An extra state ma-

+'hi:lo is h_tr,)d_u'ed Gr ,'a('h tJ_qd r.,) keep track ,)f how

rna/tv thr+.ads i_ave a(:cess('d the variable and how.

This is us+,t t,_ re•lit(:(! t.+.ls(' [)(_sitiv+,s in the case for

exattlp[( + li+dt[s 0.[e i[|itializ('d by a "iiltgl(+ dlr,.+a,[ with-

(,ut h)('ks +which is sail') ,>r +(,v,,ral r.llr_!+t(l_, just read

at v;t)+'iat)l+' ;tftcr tt haL'+ }:.('_'tt irllrializ<'ll (.&-hl(}l is ill.',;()



,at,'+ .\ttt_,tt_'-,t +hl,','.,'nt, tlt.,.t ,tr+. ttntj.>rt,utt +',Jr+:h_+

, [;tt,t V;U'_' .tit;|Ivq:'-; tl'f + +Its mti+,+W h +,k+m,_,,:-, ,t|Itl ['+'l(';l.",+"ql

,.ttlu'r l'n'.'+.,lt[tiliff, fFr)Ht ,'X(!(+tti+l.tl._, .lilfl+';l+ • .synchronl+zed

+,t;l.t('llt_'ltt:,; t)l" fl'+)lt| +'allmff+] {'pit+lit'till{k[ [rl)lll '+;',,'rll'hF++-

UtZ1'll m_'rh1:,<ls, f"urthertutu'_,, ,dl :uci>;:-;t,s r_+ fi,'l<i

'+';+rl;tb++,s;ul+J el;t:-,:.,v;tr+a._'Jl,t,s,it++' ,urta__vz_+<l.

Deadlock Detection

3. <tassicat deadlock situation ::at:,)(:cur where two

threa(ls tt an(l t, share two {<)(:ks _,: and u._,.an<i the+,,"
take the locks in different order. The deadlock will

arise if t: takes c: anti t, inunediatolv after takes ,.'+.

Now tt cannot get u., and t, cannot get vt. (.'sing
:he previous example, we can create such a situation

if we wrongly try to repair the data race by defining
the get method in line 6 as synchronized:

6. public ay'nch.rouized int get()(rot_ x;}

Now the x variable can no longer be accessed simulta-

neously from two threads, and the data race module

will no longer give a warning. However, when run-

ning JPAX on the modified program, a lock order
problem not present before i_ found and a warnin_

sta;.csthat two c,,t)jectinit+_+ncesof _+.,eValue Clio aie

taken in a different order by the two Task threads,

and it indicates the line numbers where the threads

may potentially deadlock, hence where the access to

the second lock may fail: line 4 where the call of the

get method from the add method will lock the sec-

ond object. Note that this deadlock does not need

to occur in the execution in order for this warning

to be issued. In fact. any execution of this example

program will cause a warning to be issued.

The algorithm works as follows. Two data struc-
tures are maintained in the observer: as in the data

race algorithm a thread map keeps track of which

locks are owned by any thread at any point in time.

The second data structure, a lock graph, maintains

an accumulating graph of all the locks taken by

threads during an execution, recording locking or-

_lers as edges. That is. an edge is introduced from a
h>ek ut to a lock u., in case a thread owns _,_ while

taking u_. If this graph ever becomes cyclic it re-

flet:ts a deadlock potential. Note that this algorithm

,'an catch deadlock potentials between many threads

;ks illustrated for example bv the classical {lining
phih_sopher's exan:ph,, in{tependent of the n,ttnber of

phil_)sophers. Tht,+,vents that are imp<)rtant for the

([;Lr;trace ;tll;tlvsi.s &re tnonitor tockings and t'ph,;kses:

mt:h,,r r+'sulting fr()tn ,'xp('ttting .lav;ts synchronized

st;tt_'ttl.('tlts ()r frt)tn <'allint4/rt,turt re; frtJrn synchro-
nrze,[ tnet.holts

5 (?()it(" It t.,;i_)tt:-;

\ }nl,'l" ,I+'-.+tt[d:,,It .,I J '\_. .l r:lt!t_tlt,' '.''ILttiC;It|'Jll

,ql+,+tl<,lllll+qll + +'llll+'tltl'. IlIl<t_'I" +'+",[n'Fttllt'llr;Ill+)[l ;I.Illt

,_<",,'('++)[+ftt_'tl+ +. '.t.:t:, +,r+._,.rtr('d. .\I[ql;'/U",t_tl .tIl+_ Uti+(+ -

_r;tti_)n in rh,, ,w,.r;IJl N.\.'4.\ .\m,'s ;[llrt+ttl;tt+,,+]-,oft-

war. +,n,u,im,, .rt ttu. ,'t[, +tr ..v;t.-,ht_hliu, hr ', l. ,'mpha.sizin K
th;tt (Jtl.r lit&lit L_/l;t[ W;t," tt) Mllt)l)th[', Cl)lll[)lne test-

ing an(l f()t'tn0.l nt,'rh(),!s, ',vhth, ;p,<)idinK :-;()nlt, ,)f i/he

pitfalls fr,mt at[ ht;(' r(+StiIl}_ slid till* cotnptt,xity (jr

full-bhJwn _he, w+,nr proving and rnt;,(l,_-,Ich+'('kirtg. .Jr

gpner;tJ _vSttffzl arrhit+,(:r.+lre r)f .JP_X ',v:t5 depicted.

folh)we(l by flu)r+, ,t,'taiie_l explano.rh)ns ,)f its com-

ponent._, ospeciallylogic bikse<t monit<)rtng an<[ error

pattern analysis.

[n fliture work on logic based monitoring, we will

experiment with new logics in Maude more appro-

priate to monkoring than LTL. such as interval and

real time logics and UML notations. The latter al-

lows to check original designs (via state charts and/or

sequence diagrams) against "real" execution traces.

A longer term agenda is oriented toward fast imple-

mentations of designated {ogles in more conventional

programming languages than Maude. thus improving

the overall speed of the monitoring process. Future

v, )r'.: o._: {. t) ,it "If tn/'_s w?[ (:". t{ ({t'V(':():

new algorithms for detecting other kinds of concur-

rency errors than data races and deadlocks, and of

course to try to improve existing algorithms.

We will also study completely new functionalities

of the system, such as guided execution via code in-

strumentation to explore more of the possible inter-

leavings of a non-deterministic concurrent program

during testing: and guidance of the program dur-

ing operation once a requirement specification has
been violated. Dynamic programming visualization

is also a future subject:, where we regard a visualiza-

tion package as just another rule in the observer.

A more user friendly interface, both graphical and

functional, will be provided, in addition to an im-

proved modularization of the whole system such that

so easily" adapt iS to various programming languages

an(t various h:strunwnting ntetho(lo[ogies. Of course.
the tool will be ev;tluate(t on real case studies.
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